Unexpected effects of nutrient starvation on toxin production by Umezakia ovalisporum

Prof Michele Burford, Australian Rivers Institute

Acknowledgements

- Eliza Williams (Honours student)
- Ann Chuang, Anusuya Willis, David Hamilton, Sunny Yu, Stephen Faggotter, Steve McVeigh
- City of Gold Coast

Lake Hugh Muntz

5 Brible Court, Mermaid Waters

Nobby Beach

> Built as a stormwater retention pond Used for recreation

How LHM works

Umezakia ovalisporum

- Filamentous cyanobacterium
- Positively buoyant
- Fixes nitrogen has heterocysts
- Resting cysts (akinetes)
- Produces toxins:
 - cylindrospermopsin
 - deoxycylindrospermopsin

Bloom pattern

No correlation between toxin levels and cell densities

What factors can affect toxin production?

- Growth phase
- Environmental conditions
 - Such as nutrient status, temperature
- Strain variation
- Stress
 - Such as extracellular release of toxins

Growth phase had little effect on toxin cell quotas

Lower salinity treatments had higher toxin cell quotas

No consistent response to different temperatures

Optimal temperatures for growth

Temperature

Proportion of extracellular toxin can be high

Strains of different toxin quotas

P starvation increases toxin quota in one strain

N fixation increases toxin quota in the other strain

P starvation & N fixation results in higher toxin quota for one strain

Toxin levels affected by:

- Strain variation
- Environmental conditions nutrient status, temperature, salinity
- Lower nutrients seem to increase toxin production
- Significant proportion of extracellular toxin