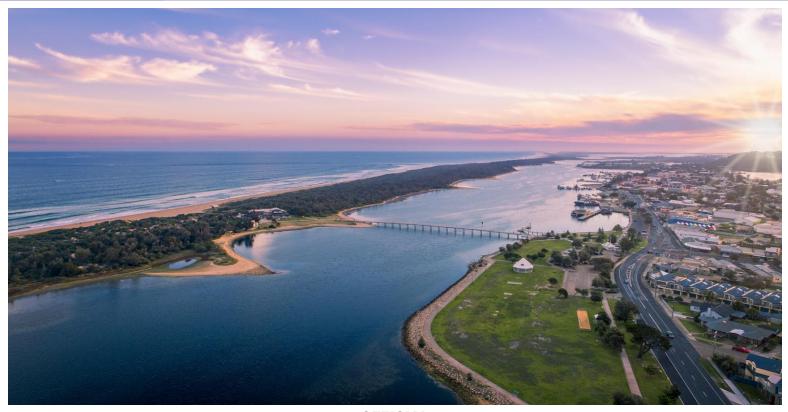
How can we more effectively predict and monitor algal toxins in the environment and in seafood?


Isabella Gore – Health Protection Officer – Water Unit

Overview

- Background of recurring algal blooms in Gippsland Lakes
- Environmental factors contributed to the severity of the 2020 and 2022 blooms
- Toxin accumulation and persistence in seafood
- Knowledge gaps

The Gippsland Lakes

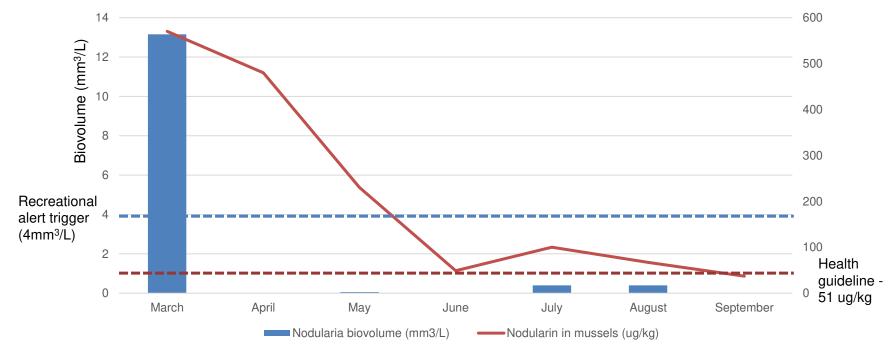
OFFICIAL Image source: iStock by Getty Images

Environmental factors contribute to severity of blooms

OFFICIAL Image source: iStock by Getty Images

Health guideline values

Toxin	Health guideline value (µg/kg of whole organism sample)*		
	Fish	Prawns	Mussels
Cylindrospermopsin	18	24	39
Microcystin/ Nodularin	24	32	51
Saxitoxin	800	800	800


*Mulvenna et al 2012 Health risk assessment for cyanobacterial toxins in seafood OFFICIAL

Nodularia spumigena

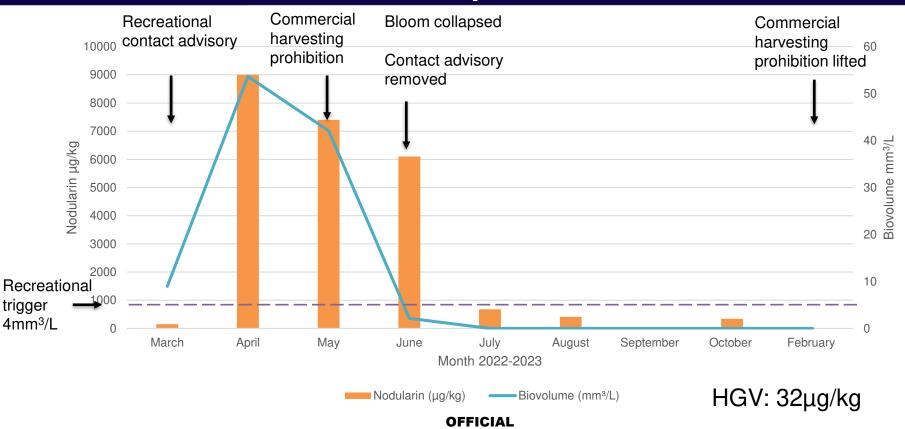
- *N. spumigena* is a filamentous nitrogen-fixing cyanobacteria
- Prefers brackish waters
- Produces harmful hepatotoxin, nodularin which can cause illness and potentially liver damage if ingested.
- Has been a persistent and recurrent cause of harmful algal blooms in the Gippsland Lakes for many years

Nodularin in mussels remains above HGVs post 2020 bloom collapse

Persistent nodularin in blue mussels

2022 harmful algal bloom

- *N. spumigena and Microcystis aeruginosa* blooms detected in Gippsland Lakes mid-February 2022
- Advisories: avoid contact with water, gut and gill finfish, do not eat shellfish or crustaceans, commercial harvesting suspended
- Seafood samples sent to NZ as limited capacity to test for both nodularin & microcystin in Australia - nodularin high in mussels and crabs
- *M. aeruginosa* bloom collapsed, *N. spumigena* bloom continued and expanded significantly prior to collapsing in June 2022


Nodularin in both flesh and hepatopancreas of crustacea

- Crabs collected from inside Lakes Entrance, eastern end of Lake King
- Low biovolumes in Lake King ~8 March
- Flesh and hepatopancreas/viscera tested separately 23/03 and 28/03
- Large increase in toxin detected between March and April (biovolume also increased dramatically)
- Toxin detected in flesh
- High variability in toxin levels between specimens

Table 2. Nodularin results from crab samples (µg/kg)

Date	Composite	Flesh	Hepatopancreas/ viscera
08/03	16		
	43		
23/03		1.2	6.9
		3.4	23
		1.5	9.4
		7.3	150
28/03		3.4	20
		2.7	47
		1.3	14
		4.5	40
		12	35
		13	71

Nodularin accumulates significantly and persists in crustacea after bloom collapse

- Difficult to predict toxin uptake
- Biovolume is not a good indicator of algal toxin presence and persistence in the environment
- Nodularin accumulates rapidly and persists in seafood for many months after the collapse of a bloom
- Need better tools to more accurately predict public health risk

Knowledge gaps

- What is the fate of nodularin toxin in the environment?
- What are the mechanisms of toxin accumulation in various seafood species, and how do these mechanisms differ among species?
- What is the relationship between the duration and intensity of algal blooms and the accumulation of toxins in seafood, and how can this be quantified and predicted?
- Are there any methods or technologies that can be employed to monitor the distribution of algal toxins within a water body and their uptake in seafood?

Acknowledgements

- The Department of Health
- The Department of Energy, Environment & Climate Action
- PrimeSafe
- Victorian Fisheries Authority

Thank You!