

Journey to the source of odour; dealing with extreme algal challenges

8th AU & NZ Cyanobacteria Workshop

Florence Choo 26/09/23

A challenging start to 2023

- 22 of our SA Water and Trility operated water treatment plants source water from the river
 - Mix of conventional and UF membrane GAC WTPs
- Metropolitan Adelaide receives River Murray water via the Mannum-Adelaide pipeline
- Largest flood event since 1956 in the Lower River Murray (Nov 2022 Feb 2023).
- Floods in Lower River Murray from November 2022 to February 2023
 - Heavy rain and flood events from interstate
- 3rd largest flood event recorded in South Australia
- Peak flowrate was 186 GL per day on 22nd December
- Aftermath of the Lower River Murray (LRM):
 - 1. Unprecedented T&O issues with relatively low cell numbers in 2023
 - 2. Persistent cyanobacteria issues impacting WTP performance

Cyanobacterial blooms along the River Murray

1991: Darling River, >1000 km impact: environmental disaster, livestock killed, species: Dolichospermum circinale

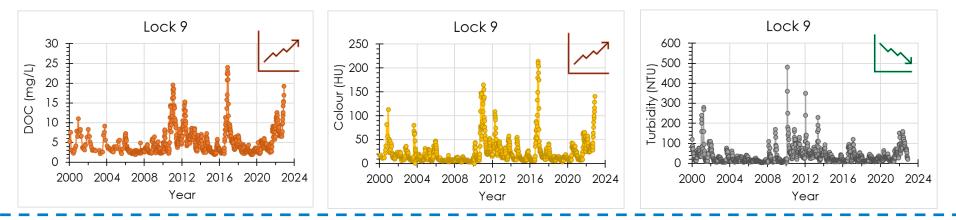
2007 – 2010: Millennial drought – D. circinale blooms

2016: Chrysosporum ovalisporum bloom –bloom never reached South Australia [now identified as Dolichospermum brachiatum], 999 ng/L geosmin detected at Renmark (SA)

2021: Dolichospermum brachiatum bloom again, reached SA WTPs (as far out as Barmera)

2022: High algal counts in summer which transitioned to high MIB concentrations in winter (8 months of activity)

2023: Extreme MIB challenge, persistent cyanobacteria in WTPs

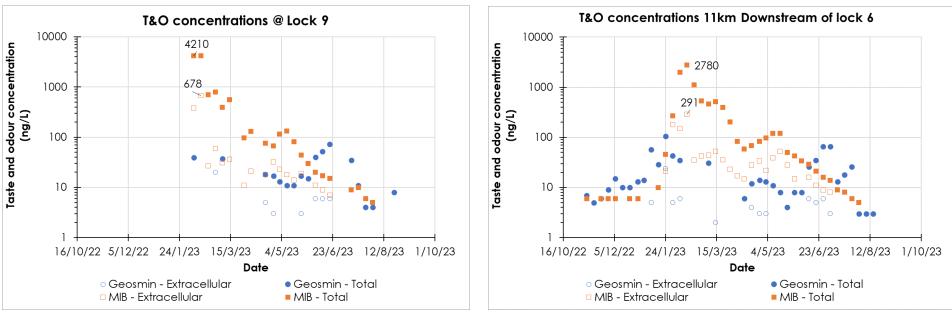


Page 4

Timeline of flood event and general WQ

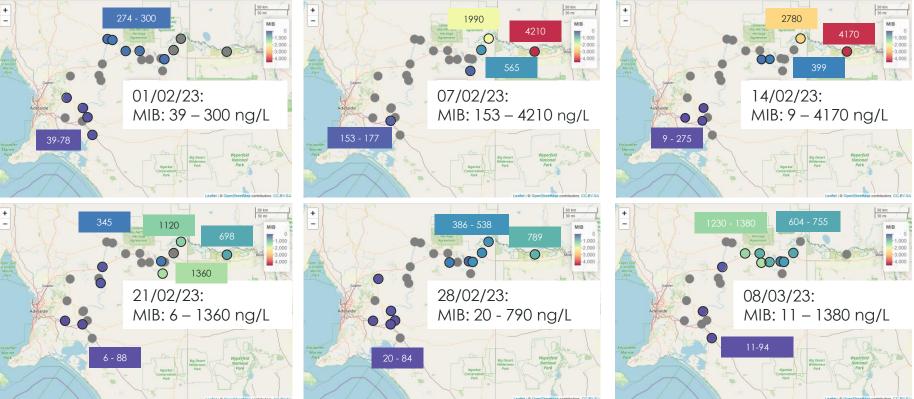
Post flood event

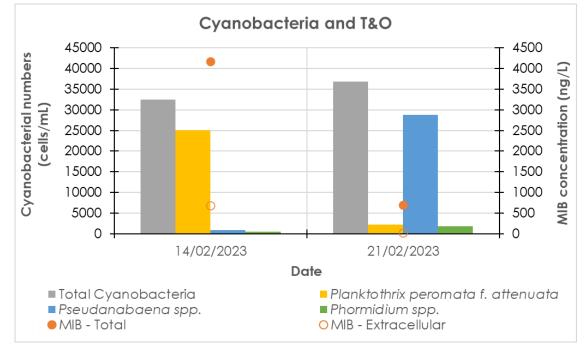
Date	рН	True Col	our	UV _{abs254nm}	Turbidity	Alkalinity	Conductivity	DOC	MIB – Totc (ng/L)	I MIB – Extracellular (ng/L)
14/02/23	8.00	~	1	\sim	~~~~~	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	4170	678
Total Cyanobacteria (cells/mL)			Other algae (cells/mL)		Actinomycetes (CFU/mL)		Deoxycylindrospermopsin (µg/L)			Saxitoxin gene (gene copies /mL)
32,500			6300		20		0.12			Detected – 1400



1. Ongoing T&O concentrations in the river

In Vic/NSW


In SA


Timelapse of MIB in the River Murray

Planktothrix perornata f. attenuata was the dominant species (77%)

• 21/02/23 – Pseudanabaena spp. was the dominant cyanobacteria a week after

MIB quotas

	Date	14/02/23	21/02/23 698	
MIB (ng/L)	Total	4170		
Cyanobacteria	Total Cyanobacteria	32500	36800	
(Cells/mL)	Planktothrix perornata f. attenuata	25100	2170	•
	Pseudanabaena spp.	860	28800	
	Phormidium spp.	468	1830	
Quota (ng/cell)	Total Cyanobacteria	1.28 x10-4	1.90 x10 ⁻⁵	
	Planktothrix perornata f. attenuata	1.66 x10 ⁻⁴	3.22 x10 ⁻⁴	•
	Pseudanabaena spp.	4.85 x10 ⁻³	2.42 x10 ⁻⁵	
	Phormidium spp.	8.91 x10 ⁻³	3.81 x10-4	

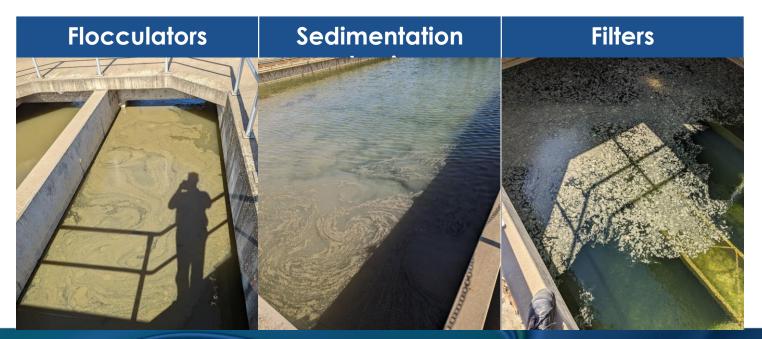
- Suspected cell quota for Planktothrix perornata f. attenuata Is 1.66 – 3.22 x10⁻⁴ ng/cell
- Planktothrix perornata f. attenuata detected in **289** samples since the 2000s
- Highest previous cell number recorded at 1,470 cells/mL
- Dolichospermum crassum found in SA over 20 years of monitoring had a geosmin quota of 1.5 x10⁻⁰⁴ ng/cell



PAC kinetics tests validation

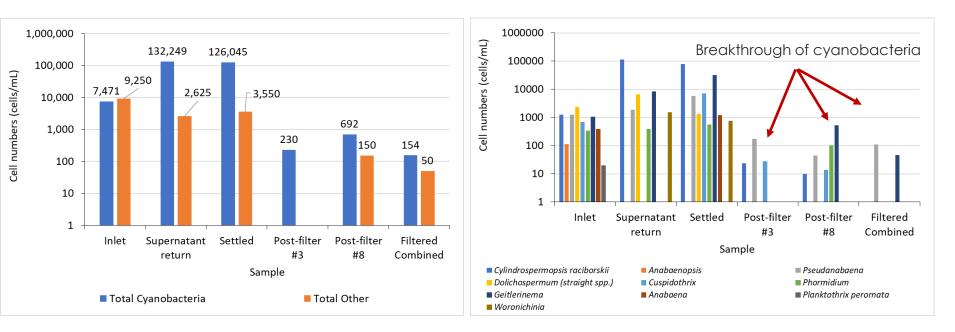
2 scenarios explored using PS1000:

- Current scenario at a WTP "As is"; Intracellular: extracellular = 90:10
 - Total = 660 ng/L
 - Extracellular = 60 ng/L
- Simulated scenario if extracellular MIB
 > 500 ng/L; Intracellular: extracellular
 = 50:50
 - Total = 1130 ng/L
 - Extracellular = 660 ng/L



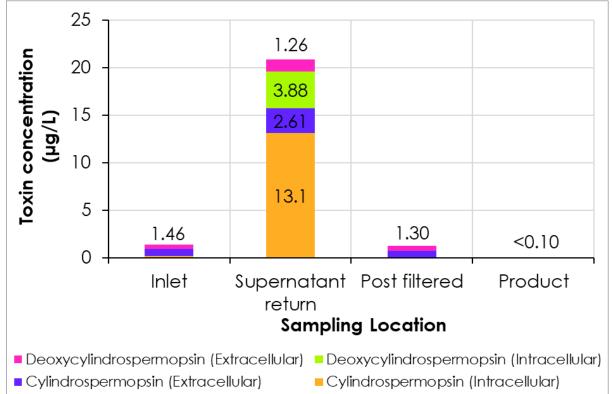
2. Continued Cyanobacteria issues at the WTPs

- Morgan WTP Conventional WTP with biologically active filters
- Post the flood event (March to July) noticed filter runtime issues, required investigation



Photos taken by Brett Kliem and/or Liz Quarrel

Raphidiopsis raciborskii found at low numbers in the inlet but concentrated up in the supernatant return


Water

Date: 21/06/23

South Australia

Toxin concentrations on the 29/06/23

Findings from intensive sampling

Targeted sampling throughout the WTP showed the following issues:

- Relatively low numbers detected at the inlet (March to July 2023)
 - However, Raphidiopsis raciborskii (formerly known as Cylindrospermopsis raciborskii) was detected this far downstream of the River Murray (165km from Lake Alexandrina – Murray Mouth)
- Supernatant return was concentrating Raphidiopsis raciborskii cells.
- Breakthrough of cyanobacteria through the filter
- Presence of cylindrospermopsins throughout the treatment process
 - No toxins in final product as it is easily oxidised by the chlorine addition

Action: Non-routine monitoring of Morgan WTP inc. filter outlet and product water until the issues "resolved itself"

Conclusion

The management of the 2022-2023 flood event aftermath was challenging. It followed with 2 main cyanobacterial issues

- 1. Large MIB concentrations detected (>4,000 ng/L)
 - Most of the MIB was intracellular (84%)
 - Determined the most probable species responsible was the seldom seen Planktothrix f. perornata
 - Most WTPs would be challenged to remove >500 ng/L of extracellular MIB
- 2. Flood events provided opportunity for other species to become a problem for WTPs. le. Raphidiopsis raciborskii
 - Potentially accumulating and producing cyanobacteria and toxins via the supernatant return
 - Observed breakthrough of cells and toxins through the filter
 - Chlorine CT exceeded requirements to ensure oxidation of toxin

Acknowledgements:

Morgan WTP operators and personnel Brett Kliem, Liz Quarrel and Claire Kolokas Water Science tech team: Elloise Trotta, Con Kapralos, Miriam Nedic, Edith Kozlik

making life flow

