WERF Sensor Challenge
and the GWRC Sensors RFP

Tung Nguyen
Amit Pramanik
Evelyn Rodrigues
Who is WERF

- US based “Not for Profit” Research Foundation
- Research providing solutions for water quality issues through advances in science and technology
- $7 million / year
- Subscriber driven
- Volunteer Board, Research Council
- Advisory committees for each program / project
- Leverage through partnerships and collaborations
Who Supports WERF Research

- WERF’s 300+ Subscribers:
 - Public Utilities (WW and SW), incl. WSAA – the Water Services Association of Australia
 - Industry (including trade associations)
 - Engineering/Consulting Firms
 - Equipment Manufacturers
 - State Regulators
- Federal Funding
- Partnerships and Collaborations
Research Drivers

- Improve water quality
- Protect human and environmental health
- Gain efficiency and reduce costs
- Achieve sustainable water resource management
- Inform regulations and policy
- Implement best practices
WERF Challenge
Sensor Integration and Guidance
Sensors Integration & Guidance

Exploratory Team Members:
- Homer Emery
- Tung Nguyen
- Salil Karkar
- Dan Murray
- Bob Dabkowski
- Anhong Zhou
- Rolf Deininger
- Robert Lagrange
- Carla Dillon
- Dong Li
- Ken Thompson
- Daniel Edwards
- Chris Saint
- Wiff Petersen
- Helen Stratton

Research Collaborators / Liaisons
- Evelyn Rodrigues
- Hsiao-Wen Chen
- Bram van der Gaag

Research Council Liaisons
- William Cooper
- John Barber
- Lloyd Johnson

WERF
- Amit Pramanik

Other Contributors
- Tony Palmer
- Maureen Ross
- Stephen G. Nutt
- Chris Vriezen
- Dan Chauvin
Sensors Integration & Guidance

- Report:
 SENSOR INTEGRATION AND GUIDANCE - STATE OF THE KNOWLEDGE - December 2010

 tung.nguyen@sydneywater.com.au
Sensors Integration & Guidance

Objectives

- Identify online sensors and associated methods* that minimize compliance violations and maintain or increase the efficiency of wastewater collection systems and treatment operations.

- Provide information, guidance and tools to address key issues to enhance the wastewater treatment process by using real-time sensor detection.
Sensors Integration & Guidance

- Drivers
 - Regulatory
 - Process Optimization (Performance & Reliability)
 - Energy Savings, Generation, Recapturing
 - Emerging Technologies
Desired Outcomes
- Build upon industry experiences both in the USA and abroad.
- Identify sensors and associated instrumentation that are robust, reliable, accurate and simple to operate and install.
- Understand and identify the most important water quality parameters or surrogates for sensor measurement.
Sensors Integration & Guidance

• Desired Outcomes
 – Communicate industry needs and sensor detection limits to the marketplace and regulators
 – Identify future research needs.
 – Make decisions for sensor selection to suit staffing level, skills and budgets.
 – Identify measurements that can be used as indicators or surrogates for operational changes and/or early warning of operational problems.
Sensors Integration & Guidance

• Research Plan
 – Develop Guidance for Industry
 • Gather existing industry knowledge and information
 • Expert workshop with technology transfer
 • Guidance and case studies
 – Application of suitable indicator and/or advanced molecular tools
 – Testing of TOC analyzers and correlation to BOD$_5$
 – Development and field-testing of **online monitoring platforms** in wastewater collection and treatment systems
WERF Sensors Integration & Guidance Challenge

First project:

$175K WERF-led collaboration through Global Water Research Coalition – “Survey of Experiences with Sensors”

- 7 sponsors: WERF, WSAA, Singapore PUB, STOWA (Netherlands), CIRSEE (France), UKWIR, WaterRF (USA)
- 4 collaborators: TZW (Germany), KWR (Netherlands), WRC (South Africa), US EPA
WERF Sensors Integration & Guidance Challenge

Objectives

- Gather and analyze information on sensor type, capital and operating costs, and case studies
- Seek and share unpublished “real world” experiences across the globe for water and wastewater
- Define practical research needs

RFP is expected in Jan 2012
Online Monitoring Platforms

- Goals:
 - Develop and field test real-time multi-sensor platform: integrating novel and generic sensors that can reliably operate in wastewater environment
 - Develop real time event impact prediction system with recommended response.

- Cost: $1.65M cash ($825K from ARC) - $1.1M in-kind
- Duration: 5 years (2012 – 2017)