Cyanobacterial bloom dynamics - some lessons from the Nineties

Brad Sherman CSIRO Land and Water
CSIRO BGA research 1992-2000 field studies

 - Explained relationship between discharge and Anabaena dominance
- Fitzroy Barrage (1997 - 2000)
 - Algal bloom dynamics in a tropical river barrage
- Chaffey Dam (1995 - 1997)
 - Destratification and water quality
Research Strategy

• Field studies
 • Hydrodynamics
 • Stratification and mixing
 • Chemistry
 • Nutrient dynamics
 • Sediments
 • Water column
 • Biology
 • Algal dynamics
 • Population dynamics
 • Species shifts
 • Photophysiology

• Modelling
 • Establish fundamental relationships between drivers
Blooms in rivers - Maude Weir, Fitzroy Barrage

- Persistent stratification occurred below flow threshold for mixing
 - We can model this accurately
- Blooms occur following onset of persistent stratification
 - $Z_{sml}:Z_{eu} < 3$

Blooms in rivers - Maude Weir, Fitzroy Barrage

- Population grew at light-limited rate
 - same growth rate observed in lab cultures
- Population stopped growing when phosphorus exhausted

Blooms in rivers - Maude Weir, *Fitzroy Barrage*

- Persistent stratification when flow below mixing threshold
 - Settling of TSS
 - Decreased turbidity
 - $Z_{sml}/Z_{eu} < 3$
- Mixed *Cylindrospermopsis* /*Anabaena* bloom

Blooms in rivers - Maude Weir, *Fitzroy Barrage*

- Population grew at light-limited rate
- Population stopped growing when phosphorus exhausted

Fig. 9. *Cylindrospermopsis* concentrations (cell ml$^{-1}$) over the top 3 m of the water column at WTP during the exponential growth phase in December 1997. The inferred *in situ* net growth rate of $\mu = 0.31$ day$^{-1}$ is indicated by the dashed line.

Blooms in reservoirs - Chaffey Dam

What makes this become ->
Intrusions

- Nutrient rich inflow 13-15 Feb 1997
- 5000 kg TP, 11800 kg TN
- Intrusion below surface mixed layer
SML deepening entrains FRP and reduces photon dose
Summary - Chaffey Dam intrusion event

• Entrainment and intrusion characteristics are well predicted by text book theory

• Intrusion below SML separates light and nutrients

• Deepening of SML by penetrative convection entrains nutrients

• Phytoplankton response is immediate following nutrient supply to SML

• No evidence that phytoplankton migrate to exploit nutrient-light separation even though distance is small (1-2 m)
Destratification - Chaffey Dam

10 plumes @ 10 L/s air flow per plume

- No effect on surface layer depth
- Low mean wind speed
- Cyanobacterial blooms continue
- 80% reduction of internal FRP load

\[y = -3.21 + 35.1x \quad r^2 = 0.88 \]

Summary

• BGA populations grow at light-limited rate
 • Require $Z_{sml}:Z_{eu} < 2-3$
 • $\mu \sim 0.35 \text{ d}^{-1}$
 • Population doubles every 2 days (from 100 to 13000 cells mL$^{-1}$ in 2 weeks)

• BGA population biomass is probably limited by P
 • Seldom observed evidence of nutrient limitation in the field despite very low nutrient concentrations
 • $\sim 7 \mu g \text{ L}^{-1}$ P can support 15000 cells mL$^{-1}$ of Anabaena

• No evidence of buoyancy-regulated movement to exploit light-nutrient separation
 • Explicitly observed not to happen
 • Surface layer population redistributed throughout SML every night due to penetrative convection
Summary - destratification/enhanced circulation

- Generally has not produced deeper SMLs
 - Unlikely to induce light-limitation of cyanobacteria
 - Success depends on local climatic conditions and flow rate relative to reservoir volume (it’s an engineering design and cost issue)
 - Smaller storages (< 10000 ML) appear to be the best candidates
- Generally does increase dissolved oxygen
 - Reduced internal nutrient load > lower algal biomass
 - Consider oxygenation as an alternative?

“If all you have is a hammer, everything looks like a nail”

“Millions saw the apple fall, but Newton was the one who asked why”

Bernard Baruch (1870-1965)
CSIRO Land and Water
Dr Bradford Sherman
Senior Research Scientist

Phone: +61 2 6246 5579
Email: brad.sherman@csiro.au
Web: www.clw.csiro.au

Thank you