Biofiltration of cyanobacterial metabolites MIB and geosmin as a viable water treatment option

Daniel Hoefel, Lionel Ho, Bridget McDowall, Paul Monis, Gayle Newcombe and Christopher Saint

National Cyanobacterial Workshop,
Parramatta, 12th to 13th August, 2009
Biological filtration in SA WTPs

Reservoir → Coagulation → Flocculation → Sedimentation → To sludge treatment and disposal → Filtered water storage

Increased biological activity?

Rapid anthracite-sand filters

Chlorine

Backwash supply sump
- Ammonia
- Fluoride, caustic
Biological filtration at Morgan WTP

- Filter media in place since 1986
- December 2004

Decrease in biological activity?

Geosmin Breakthrough

Filtered water storage ➔ Rapid anthracite-sand filters ➔ Backwash supply sump
- Ammonia
- Fluoride
- Caustic
- Chlorine

Chlorine ➔
Geosmin breakthrough

McDowall et al. (2007), Water 34(7), pp. 48-54
Laboratory scale column experiments
(Morgan WTP sand filter medium)

Ho et al. (2007), Chemosphere 66, pp. 2210-2218
Batch experiments
(Morgan WTP settled water)

Ho et al. (2007), Chemosphere 66, pp. 2210-2218
Isolation of geosmin degrading bacteria
(consortium of three bacteria)

16S rRNA gene Neighbour-joining phylogenetic analysis

Isolation of geosmin degrading bacteria (individual bacterium)

16S rRNA gene
Neighbour-joining phylogenetic analysis
Geosmin degradation by individual bacterium *Sphingopyxis* sp. Geo48

Hoefel *et al.* (2009), *Wat. Res.* 43 (11), pp. 2927-2935
Enhancing biofiltration of geosmin by seeding sand filters with geosmin degrading bacteria
Enhancing biofiltration of geosmin by seeding sand filters with geosmin degrading bacteria

Conclusions

- Chlorine in backwash water of Morgan WTP
 - Full scale evidence of biofiltration for the removal of secondary algal metabolites (T&O compounds)

- Laboratory scale column and batch experiments
 - Validated the full scale removals at Morgan WTP
 - Investigate transient periods for MIB and geosmin
 - Investigated the effect of T&O concentration, cell numbers etc

- Isolation and phylogenetic analysis of geosmin degrading bacteria
 - Better understanding of the organisms responsible for T&O removal

- Enhancing the biofiltration of T&O compounds by seeding sand filter columns
Future work

- Isolation of bacteria involved in the degradation of MIB
- Investigation into the genes involved in the degradation of geosmin and MIB
 - Development of molecular tools for screening WTP sand filters
- Additional laboratory scale investigations into enhancing biofiltration of geosmin and MIB by seeding degrading organisms
 - Pilot scale
Acknowledgements