MIB-producing cyanobacteria (*Planktothrix* sp.) in a drinking water reservoir: distribution and odor producing potential

Ming Su (苏命)

ningsu@rcees.ac.cn

Supervised by:
Prof. Min Yang

State Key Lab. of Environmental Aquatic Chemistry
Research Center for Eco-Environmental Sciences (RCEES)
Chinese Academy of Sciences

4th National Cyanobacterial Workshop • Adelaide
Sep 22th 2014
Outline

- Introduction
- Methods
- Results & Discussion
- Conclusion
T&O problems in reservoirs caused by HAB

Reservoir ➔ Algal growth ➔ Water quality

- Artificial
- River >>> Reservoir
- HRT (hydrology resistant time)

Dam
Turbidity ↓ Light ↑
river < reservoir < lake

Odor

- *Anabaena* bloom with extremely high concentration of geosmin (7100 ng/L) in 2007.

Li, Z. et al., 2009
CASE 2. MIB problem in Miyun Res.

- Good water quality;
- But with high conc. of MIB

Water Intake

- MIB con. (>100 ng/L)

Large deep reservoir
Questions

- Why different algal species grow in different reservoirs and cause odorous problems?
 - The diver of Planktothrix sp. in Miyun Reservoir, and its distribution characters.
Uncover the sources and divers of odorous problems in source water

Providing scientific support to source water management
Methods

- **Online Monitor**
 - Online monitoring station
 - Meteorological, hydrological, physico-chemical data

- **LAB analysis**
 - Surface mapping system
 - Water sampling
 - Algae, nutrients, odorous compound

Data analysis, modeling

Harmful algal dynamics, impacts on WQ
Field investigation

Methods

- Online monitoring station
- Meteorological data
- Physic-chemical data
- Surface mapping system
- No extra power
- Benthic algae sampler

Quantification of algal biomass and odorous compounds based on real time qPCR

Anabaena sp. & geosmin
Planktothrix sp. is the main producer of MIB.

Sep – Oct (max conc.)
Introduction

Methods

Result & discussion

Conclusion

MIB problem in Miyun Res.

2009

2010
Miyun Res.: main surface water source;
Capacity: 1.0-1.2/4.375 billion m³;
Surface area: 188 km²
Introduction

Methods

Result & discussion

Physi-chemical characteristics

Good water quality

- Low nutrients
- High water transparency

Why odor problem even occurs in a reservoir with good water quality?

Long term investigation
Long term investigation

- Algal dynamics
 - *Planktothrix* sp.

- Environmental factors
 - General physi-chemical parameters
 - Nutrients
 - Meteorological data
 - Hydrological data

- MIB monitoring
Algae species investigation (2009-2012)

<table>
<thead>
<tr>
<th>Phylum</th>
<th>SPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacilla.</td>
<td>39</td>
</tr>
<tr>
<td>Green</td>
<td>63</td>
</tr>
<tr>
<td>Cyano.</td>
<td>37</td>
</tr>
</tbody>
</table>

* Lake Tai: SPs-64 种*

: 李军 生态环境, 2006
Algae dynamics (2009)

Microcystis sp.

Planktothrix sp.
Investigation - *Planktothrix sp.* (MIB)

- MIB distribution ***Planktothrix distri.***
- Main distribution area
 - North shallow area
Investigation - *Planktothrix* sp. distribution

Sampled in the north shallow area

Conc. of *Planktothrix*: 10^6 cells/L

Diameter represents concentrations

Colors stand for different water depth
Introduction

Methods

Result & discussion

Conclusion

Seasonal distribution of *Planktothrix* (2009-12)

Annually repeated during Sep. and Oct.

Detection rate of *Planktothrix* (2009-2012)

<table>
<thead>
<tr>
<th>Zone</th>
<th>Mar–Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
</tr>
</thead>
<tbody>
<tr>
<td>NESR</td>
<td>11.1%</td>
<td>5.9%</td>
<td>63.6%</td>
<td>65.7%</td>
<td>67.7%</td>
<td>40.0%</td>
</tr>
<tr>
<td>NSR</td>
<td>8.3%</td>
<td>15.6%</td>
<td>81.8%</td>
<td>84.4%</td>
<td>64.3%</td>
<td>44.4%</td>
</tr>
<tr>
<td>SDR</td>
<td>8.8%</td>
<td>7.4%</td>
<td>60.9%</td>
<td>73.9%</td>
<td>71.4%</td>
<td>37.5%</td>
</tr>
<tr>
<td>WDR</td>
<td>12.5%</td>
<td>0.0%</td>
<td>25.0%</td>
<td>21.9%</td>
<td>38.3%</td>
<td>33.3%</td>
</tr>
<tr>
<td>Total</td>
<td>10.7%</td>
<td>7.6%</td>
<td>47.1%</td>
<td>65.9%</td>
<td>58.7%</td>
<td>41.2%</td>
</tr>
</tbody>
</table>
Spatial distribution (Sep.)

- Mainly in north shallow region (NSR)
- Biomass in bottom layer > surface (70%)
- It present in South deep region (SDR)

---Question: Why?

R: Bottom > Surface
B: Bottom < Surface
Spatial distribution - topography

Topography of Miyun Res.
Spatial distribution - Water stability

Water stability

<table>
<thead>
<tr>
<th></th>
<th>WDR</th>
<th>SDR</th>
<th>NSR</th>
<th>NESR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal</td>
<td>Low water flow velocity</td>
<td>Low</td>
<td>Estuary, high</td>
<td></td>
</tr>
<tr>
<td>Vertical</td>
<td>WDR/SDR deep, strong stratification (Jun-Oct)</td>
<td>NSR/NESR shallow, weak stratification (Jun-Aug)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- **Deep**
 - Temperature [°C] (MY08)
 - Depth [m]
 - Jun <--- stratification ---+--- Oct

- **Shallow**
 - Temperature [°C] (MY05)
 - Depth [m]
 - Jun <--- stratification ---+--- Aug
Spatial distribution - nutrients

- Shallow regions (NSR/NESR)
 - Significant seasonal variations
 - Minimum conc. observed in August.
 - Nutrients increase from mid-Aug, (stratification weaken, vertical mixing enhancement)
 - Nutrient hot spot: bottom layer in NSR.

- Deep regions (WDR/SDR)
 - Less seasonal variations (low algal biomass)
- *Planktothrix* is affected by nutrients (phosphate, surface/middle layer).
- In bottom layer, *Planktothrix* is not highly related to nutrients.
- **Microcystis** biomass decrease: due to nutrients exhaust, water temperature decrease
- **Planktothrix** biomass increase: due to higher water transparency, relative high nutrient conc. in bottom layer
- M. sp. is affected by temperature (temp. decreases in late Aug is harm to M. sp.)
- Low temp.: high MIB yield.
Planktothrix growth affects water transparency.

Microcystis growth is sensitive to water transparency.
Sketch map of niche competition (*M.* sp & *P.* sp)
Similar to *Planktothrix*, concentrates during Sep. and Oct.
Spatial distribution of MIB (2009-2012)

WDR

12.2 ± 8.7

SDR

36.6 ± 25.0

NSR

67.0 ± 36.6

NESR

48.1 ± 26.1
Spatial distribution of MIB (Jul)

Jul and before:
- MIB conc. is low
- No significant spatial variations
- No sig. vertical variations
Result & discussion

Sep:
- MIB conc. increases significantly in NSR
- Conc. in WDR < threshold (15 ng/L)
- Conc. SDR increasing — Why?
- Conc. in bottom layer > surface water (70%)
Spatial distribution of MIB (Oct)

Oct:
- MIB conc. Decrease
- SDR conc. remains high—why?
Nov: MIB conc. less than threshold
MIB & *Planktothrix* sp.

<table>
<thead>
<tr>
<th>MIB conc. [ng/L]</th>
<th>log(Pla) [cells/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>4.2</td>
</tr>
<tr>
<td>50%</td>
<td>4.7</td>
</tr>
<tr>
<td>90%</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Threshold: 15 ng/L
Possible strategy for MIB problems

- **Depth < 5.13 m**: risk of MIB > threshold is about 90%.
- **Depth < 7.73 m**: risk of MIB > threshold decreased to 50%.

Possible strategy for MIB problems

- Reservoir construction
- Reservoir water level management

Introduction

Methods

Result & discussion

Conclusion
Conclusion

- *Planktothrix* biomass increase during Sep. - Oct.: Decreasing of *Microcystis* enhanced underwater light availability; weaken stratification enhanced nutrients transportation;

- The risk of MIB concentration higher than its threshold can be reduced from 90% to 10% by controlling the *Planktothrix* cell density from $10^{5.7}$ to $10^{4.2}$ cells/L.

- The water level affect the *Planktothrix* biomass, which suggesting that the *Planktothrix* biomass can be controlled by adjusting the water level if possible.

This project was found by National Natural Science Foundation of China (NNSFC);

The 4th cyanobacteria workshop committee.
Thanks for your attention!